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Abstract
A novel method is presented for fully automatic detection of candidate white
matter (WM) T1 hypointense lesions in three-dimensional high-resolution T1-
weighted magnetic resonance (MR) images. By definition, T1 hypointense
lesions have similar intensity as gray matter (GM) and thus appear darker
than surrounding normal WM in T1-weighted images. The novel method
uses a standard classification algorithm to partition T1-weighted images into
GM, WM and cerebrospinal fluid (CSF). As a consequence, T1 hypointense
lesions are assigned an increased GM probability by the standard classification
algorithm. The GM component image of a patient is then tested voxel-by-
voxel against GM component images of a normative database of healthy
individuals. Clusters (�0.1 ml) of significantly increased GM density within a
predefined mask of deep WM are defined as lesions. The performance of the
algorithm was assessed on voxel level by a simulation study. A maximum dice
similarity coefficient of 60% was found for a typical T1 lesion pattern with
contrasts ranging from WM to cortical GM, indicating substantial agreement
between ground truth and automatic detection. Retrospective application to 10
patients with multiple sclerosis demonstrated that 93 out of 96 T1 hypointense
lesions were detected. On average 3.6 false positive T1 hypointense lesions per
patient were found. The novel method is promising to support the detection of
hypointense lesions in T1-weighted images which warrants further evaluation
in larger patient samples.

(Some figures may appear in colour only in the online journal)
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Introduction

Multiple sclerosis (MS) is an inflammatory disease of the central nervous system, which also
has a neurodegenerative component. Magnetic resonance (MR) imaging of the brain plays a
pivotal role in the diagnosis of MS in addition to clinical assessment. MR-based diagnostic
criteria have been established and resulted in earlier diagnosis and treatment (Polman et al
2011, McDonald et al 2001). Hallmark of the disease are lesions due to inflammatory relapses
in the brain and spinal cord that disseminate in time and space. Two imaging biomarkers
(diagnostic markers) are frequently used to characterize MS lesion patterns and changes
thereof: the number of lesions seen in T2-weighted images and the number of gadolinium
enhancing lesions in T1-weighted images. T2-weighted fluid-attenuated inversion recovery
(FLAIR) images are often preferred over conventional T2-weighted images, because they
provide better lesion contrast (Filippi et al 1996, Woo et al 2006).

Quantitative assessment of MR imaging is useful not only in the management of MS
patients in clinical routine, but also in the context of MS therapy trials. MR-based markers
have been used in trials to assess potential neuroprotective effects of the drug (Barkhof
et al 2009, Wolinsky et al 2013, Radue et al 2012). Detection and characterization of T1
hypointense lesions are particularly useful for this purpose, as these lesions are correlates of
the loss of myelin and axons (van Walderveen et al 1998). There is accumulating evidence
that T1 hypointense lesion accrual is associated with worsening in clinical disability (Giorgio
et al 2013).

Manual detection and characterization (including volumetry and categorization of the
localization) of T1 hypointense lesions are time consuming and prone to significant intra- and
inter-reader variability. Therefore, automatic procedures might be useful. In clinical trials, the
elimination of intra- and inter-reader variability is expected to improve the statistical power
which would result in reduced sample size required to demonstrate therapy effects.

However, whereas there is a large body of literature on automated detection and volumetry
of lesions in T2-weighted images (an overview of automated algorithms is given in table 1 in
Schmidt et al 2012), there are only very few studies which addressed the automatic detection
of hypointense lesions in T1-weighted images. Adams et al (1999) measured T1 hypointense
lesion volumes using a region growing algorithm based on the manual annotation of seed
points. Molyneux et al (2000) deployed a semi-automated contour technique. These concepts
were further advanced by Datta et al (2006) who presented a technique which requires only
minimal operator intervention.

The relative lack of methods for the automatic analysis of T1-weighted images compared
to T2-weighted images might be related to the fact that a T1 hypointense lesion by definition
is associated with a hyperintense lesion in T2 (Sahraian et al 2010), for the detection and
volumetry of which there are automatic methods available. However, there is no exact one-
to-one correspondence between hyperintense voxels in T2-weighted images and hypointense
voxels in T1-weighted images: the hypointense lesion in T1 may be significantly smaller
than the corresponding hyperintense lesion in T2 (Neema et al 2007). Thus, fully automatic
methods for the independent detection and characterization of T1 hypointense lesions might
be useful, in particular since improving accuracy of T1 lesion volumetry seems to enhance
correlations with clinical measures (Tam et al 2011, Giorgio et al 2013).

The aim of this study, therefore, is to propose a novel algorithm for automatic detection
and quantification of T1 hypointense lesions. The method takes advantage of the fact that
hypointense white matter (WM) lesions in T1 present with intensity similar to normal gray
matter (GM). The first step of the method is to partition native, high resolution T1-weighted
images into GM, WM and cerebrospinal fluid (CSF). T1 hypointense lesions are assigned an
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increased probability of being GM. This is the rationale for the second step in which the GM
probability map of the patient is tested voxel-by-voxel against GM maps of healthy subjects.
Clusters with significantly increased GM density within a predefined region-of-interest (ROI)
for WM are ‘candidates’ for T1 hypointense lesions. In the third step, the contour of each
candidate lesion is transferred to the coregistered T2 or FLAIR image of the same patient in
order to check for the presence of a corresponding T2 hyperintense lesion. Currently, this is
done by a human rater. In the future, the automatic detection of T1 hypointense lesions will
be combined with the automatic detection of T2 hyperintense lesions.

The novel method was inspired by de Boer et al (2009), who used tissue misclassification
in a T1-weighted image to aid the segmentation of T2 hyperintense lesions in a corresponding
FLAIR image. Patterns of misclassifications in T1-weighted images have not yet been used
for the characterization of lesions in T1 itself. Other groups considered T1 hypointense lesions
as a source of error in tissue segmentation and solved this problem by avoiding explicit
segmentation (Stamatakis and Tyler 2005) or by introducing a lesion class in addition to the
standard tissue classes of GM, WM and CSF (Seghier et al 2008, Shiee et al 2010).

The novel method was evaluated by computer simulations and by application to a small
sample of relapsing-remitting and secondary progressive MS patients.

Methods

Lesion detection algorithm

In T1-weighted brain MR images, MS lesions appear darker than surrounding normal
WM. Since standard classification algorithms are optimized for normal brain anatomy,
misclassification of dark appearing WM (DAWM) as GM is frequently observed (Sanfilipo
et al 2005). Hence the basic idea of the novel lesion detection algorithm is to utilize the
misclassification of DAWM for the localization of lesions. A voxelwise statistical test then
evaluates whether the GM composition of DAWM voxels is significantly different from that
of corresponding voxels of a normative population of healthy subjects.

The novel lesion detection algorithm comprises four major processing steps (see the
flowchart in figure 1). First, T1-weighted images are classified into standard tissue classes,
i.e. GM, WM and CSF. Second, component images are deformed to match a stereotactic
atlas. Third, a voxelwise statistical test is applied, which detects significantly increased GM
densities in a single MS patient. Finally, connected regions larger than 0.1 ml are identified
and defined as ‘candidate’ T1 hypointense lesions. For the first three processing steps voxel-
based morphometry (VBM) (Ashburner and Friston 2000) as implemented in SPM8 (release
April 2009; Wellcome Trust Centre for Neuroimaging, London, UK) was deployed, which
was adapted to single subject cases.

Input data are three-dimensional (3D) high-resolution T1-weighted MR images of a single
subject, for whom candidate T1 hypointense lesions are to be automatically detected, and 3D
high-resolution T1-weighted MR images of subjects of a normative database as reference data
for the voxelwise statistical test. A basic prerequisite is that input data were acquired with the
same scanner and image acquisition protocol.

Segmentation. The standard segmentation engine of VBM was used, which is the unified
segmentation algorithm from Ashburner and Friston (2005). The performance depends on
prior tissue probability maps (TPMs) for GM, WM and CSF, which assist the segmentation
process by providing prior information on tissue composition of a normal brain. We deployed
freely available TPMs which were generated from a population of 662 healthy elderly subjects
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Figure 1. Flowchart of the lesion detection algorithm. It comprises four main processing steps
which are segmentation of T1-weighted MR input images, stereotactic normalization, voxelwise
statistical analysis and lesion definition. The processing steps are described in the text in more
detail.

aged between 63 and 75 years (Lemaitre et al 2005). TPMs feature an isotropic resolution of
1 mm. Prior to segmentation, images were rigidly coregistered to a T1 template defined in the
same space and with the same dimensions as the TPMs, which was demonstrated to improve
the segmentation accuracy of the unified segmentation algorithm (Klauschen et al 2009).

We used the default settings of the unified segmentation engine. A mixture of Gaussians
to model intensity distributions of GM, WM, CSF and 1–GM–WM–CSF was deployed. The
number of Gaussians was 2, 2, 2 and 4, respectively. Further parameters were: 25 mm for
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the cut-off of 3D discrete cosine transform basis functions for spatial warping, very light
regularization (0.0001), and 60 mm width for the Gaussian smoothness of the intensity bias
field.

The unified segmentation algorithm produces GM, WM and CSF component images with
dimensions of the original image (native space). Voxel values of a component image range
from 0 to 1.

Stereotactic normalization. GM and WM component images were simultaneously
normalized using a high-dimensional elastic registration technique (DARTEL) (Ashburner
2007). The DARTEL registration produces flow fields. Flow fields are vector fields describing
the transformation of an image from native space to a stereotactic atlas defined in the Montreal
Neurological Institute (MNI) space. Flow fields have an isotropic spatial resolution of 2 mm.
They were applied to GM component images yielding normalized GM component images.
Normalized GM component images are called GM tissue maps in what follows. Volume is
preserved (<0.2 per mille volume difference) since the determinant of the Jacobian of the
transformation field is locally applied (modulation). Modulated GM tissue maps given in
MNI space for each subject were obtained as a result. Modulated GM tissue maps feature an
isotropic voxel grid with a grid size of 2 mm. The total voxel volume is thus 0.008 ml.

Voxelwise statistical analysis. Prior to testing, modulated GM tissue maps of the single
subject and subjects of the normative database were spatially smoothed by an isotropic
Gaussian filter. This ensures that voxel values across the normative database are normally
distributed, which is a prerequisite for applying the t-test (Salmond et al 2002a).

Age and total intracranial volume (TIV), which is the total of GM, WM and CSF volumes,
have a significant impact on the GM volume in a normal brain (Pell et al 2008). As a
consequence GM dependence on age and TIV has to be controlled. A bilinear relationship was
used to model the effect of TIV and age in each voxel across all normative subjects. TIV and
age were considered as independent variables. For each voxel the bilinear model was fitted
to the modulated and smoothed GM tissue maps of the normative database. Voxel values of
the single subject, gm, were then corrected to mean age, 〈age〉, and mean TIV, 〈TIV〉, of the
normative database using bilinear modeling: gm = gm+a·(age − 〈age〉)+b·(TIV − 〈TIV〉).
Here, a and b are the voxelwise regression coefficients. In the equation above, age and TIV
are parameters of the single subject.

For voxelwise statistical analysis we deployed the general linear modeling framework
adapted to single case studies. Such an adaptation was suggested by Muhlau et al (2009).
Their approach, which we followed in this paper, uses an independent two-sample t-test.
Both samples are assumed to have the same distribution with estimated means and variances
given by the distribution of the normative database. Hence, the voxelwise two-sample t-test
simplifies to

t = 〈gm〉 − gm
√

s2/N + s2
. (1)

Here, 〈gm〉 denotes the voxelwise GM volume averaged over all modulated and smoothed
GM tissue maps of the normative database comprising N healthy subjects. s2 is the estimated
variance of the respective normative database. gm represents the corrected GM voxel volume
of the single subject as described above. Since GM enhancements of the single subject versus
subjects of the normative database are of interest, contrasts t < 0 (one-sided) are considered.

Statistical analysis was restricted to regions dominated by WM and thus defined by those
voxels which contained a minimum of 85% WM in an average normal subject (represented



8328 L Spies et al

Figure 2. WM mask (dark gray) shown on sample slices in axial, sagittal and coronal view covers
regions with more than 85% WM content on average used as a representation for deep WM regions
of the brain. Additionally voxels of the corpus callosum were included.

by the WM TPM). Additionally, we included all voxels which belong to the corpus callosum
as defined by the wfu pick atlas (Maldjian et al 2003). A respective binary mask (figure 2),
denoted as WM mask, was derived, which renders one for a voxel belonging to this voxel set
and zero outside. Anatomically it can be interpreted as a representation for deep WM regions
of the brain.

The test produces parametric t-maps with the same dimension and voxel volume as the
modulated and spatially smoothed GM tissue maps. No corrections for multiple comparisons
were applied because we wanted the test to be most sensitive.

Lesion definition. Lesion masks were derived from parametric t-maps. Clusters of voxels
with negative t-values lower than threshold t-values determined by significance levels
(p-values) of interest were considered as lesions if cluster voxels were interconnected by at least
one edge. For automatic lesion labeling and counting, a method developed by Thurfjell et al
(1992) was applied. All voxels belonging to a lesion define a lesion mask. The corresponding
lesion volume is the total of all voxel volumes of the lesion mask. Lesion volumes below a
threshold of 0.1 ml (13 voxels) were discarded. In this way, for each parametric t-map and
each p-value a lesion map of ‘candidate’ T1 hypointense lesions was produced.

Evaluation

Simulation data. The Brainweb MR simulator provides customizable high-resolution MR
images of normal brains and brains with MS lesions for T1, T2 and PD contrast (Collins et al
1998). It has been frequently used in the literature and meanwhile it is considered a standard
for testing methods for MR-based lesion detection in MS patients. In this study, we used
simulated T1-weighted images generated with the default settings of the simulation engine
(T1-weighted spoiled FLASH pulse sequences with a repetition time of 18 ms, echo time of
10 ms, flip angle of 30◦, 1 mm isotropic voxel grid and matrix size of 181 × 217 × 181).

Eleven images of a healthy brain, denoted as a non-lesion database, and 11 images with
a typical MS lesion load (using the simulator’s ‘severe’ lesion model), denoted as a lesion
database, were simulated with random noise and non-uniformity level with a mean noise level
of 3% (relative to the brightest tissue) and a mean image non-uniformity of 20%, respectively.
We suppose that images with a 3% noise level and 20% non-uniformity on average are
representative for patient images of current scanners.
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Figure 3. Axial view of a simulated MS brain with T1 lesions stemming from the Brainweb MR
simulator using the severe lesion model (left). Right shows the same slice but with the lesion ROI
image superimposed (black). The lesion ROI image was generated by thresholding the LM ground
truth image at 0.2. Slices are displayed in radiological orientation (left to right).

The simulator offers ground truth information. For a normal brain, ground truth
information is provided as GM, WM, CSF ground truth images. Ground truth images feature
a voxel grid with identical size and dimensions as simulation images. For a brain with MS
pathology, an additional class is provided, which is distinct from GM, WM and CSF and
denoted as a lesion matter (LM) ground truth image. All ground truth images feature voxel
values from 0 to 1 denoting the probability of the respective tissue for that voxel.

Patient cohort and normative databases. The patient cohort included 10 MS patients
(7 females, 3 males; age 31–63 yr, median 44 yr). Six patients had been diagnosed with
relapsing-remitting MS and four patients with secondary progressive MS.

A normative database comprises 28 healthy individuals with age ranging from 22 to
80 years without history of current neurological or psychiatric disorder. Median age is 43 years.
The health status of each eligible subject was confirmed by a clinical examination.

Normal subjects and MS patients were all acquired using a 3T MR scanner (GE Signa
HDxt) and deploying the same imaging sequence with 3D high-resolution T1-weighted
magnetization prepared rapid gradient echo (MPRAGE) acquisition. The following protocol
settings were used: TR = 6.79 ms, TE = 1.93, TI = 450 ms. Flip angle was 8◦. No contrast
agent was administered prior to MPRAGE scanning. Slice thickness is 1 mm and pixels are
1 mm in size for both directions.

For all MS patients, FLAIR images were additionally acquired. The protocol settings
were TR = 8000 ms, TE = 120 ms, TI = 2247 ms and flip angle = 90◦. The slice thickness
was 2.6 mm with a 2.6 mm gap and the isotropic in-plane voxel size is 0.51 mm.

Effect of misclassification. The effect of misclassification was studied in synthetically
generated lesions deploying the severe lesion model of the Brainweb MR simulator: a lesion
ROI image was defined by thresholding LM ground truth image voxels at 0.2 (figure 3). Voxels
with a value greater than 0.2 were set to 1 and define the lesion ROI. All other voxels were
set to zero. The lesion ROI volume was calculated to be 19.0 ml. All 22 simulated images
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(with and without lesions) were segmented into GM, WM and CSF component images using
the unified segmentation algorithm. GM, WM and CSF volumes within the lesion ROI were
estimated by summing up all voxels of the GM, WM and CSF component images belonging to
the lesion ROI normalized to the volume of the lesion ROI. Mean GM, WM and CSF volumes
were calculated.

Parameter optimization. We were interested in assessing the performance of the algorithm
for a wider spectrum of T1 hypointense lesions ranging from gray to almost normal appearing
WM. Since the Brainweb MR simulator does not offer a model which allows tuning of lesion
severity, we devised our own simulation model.

For this simulation, all 28 healthy subjects of the intra-scanner normative database were
segmented into GM and WM component images. GM and WM component images were then
simultaneously registered to the stereotactic MNI space using DARTEL and modulated to
warrant volume preservation. The lesion ROI image as defined above (figure 3) was deployed
and was transformed into MNI space. No modulation was applied to ensure that the lesion
ROI remained binary after transformation.

Since the segmentation algorithm identifies more GM in DAWM areas as normally
expected, an artificial lesion in normal tissue, gmβ , can be modeled by adding extra GM
tissue to normal GM tissue according to the following equation:

gmβ = gm0 + β · wm0, (2)

where gm0 and wm0 are modulated GM and WM tissue maps of a normal healthy subject.
Outside of the lesion ROI the parameter β is always zero, i.e. gmβ = gm0. The parameter β,
termed as ‘lesion effect size’, models the impact of the lesion on WM contrast (lesion severity)
and is varied from 0 to 1 in increments of 0.1. A β value of zero models the situation that no
lesion tissue is present or the lesion appears as normal WM. A value of 1 signifies that the
WM lesion tissue is misclassified as GM. Since CSF content in WM is relatively small and not
altered in DAWM lesions, CSF was disregarded in the above model for the sake of simplicity.
Composite GM tissue maps were spatially smoothed with the same Gaussian filter and then
submitted to the voxelwise statistical test (equation (1)).

To obtain a robust estimation of the effect, this procedure was iterated for all subjects of
the normative database as follows: select one subject, apply the artificial lesion with varying
strengths and test against the remaining original subjects of the database (leave-one-out). For
each subject and each parameter setting (lesion effect size, Gaussian filter size and p-value),
a parametric map was generated and lesions were defined as described above. Gaussian filter
sizes with a full width at half maximum (FWHM) of 4 and 8 mm and p-values of 0.05 and
0.005 constituted the parameter range of interest.

For validation on voxel level, lesion maps were analyzed as follows: WM voxels were
classified as true positive (TP) if they belonged to a lesion ROI and to a ‘candidate’ T1
hypointense lesion. False positive (FP) voxels were voxels outside of the lesion ROI, which
belonged to a ‘candidate’ T1 hypointense lesion. Analogously, true negative (TN) voxels were
voxels outside of the lesion ROI which did not match a ‘candidate’ T1 hypointense lesion and
false negative (FN) voxels were voxels within the lesion ROI which did not match a ‘candidate’
T1 hypointense lesion.

The dice coefficient (DC) (Dice 1945) was chosen as a primary performance measure to
characterize correspondence between the lesion map and ground truth image. DC is a very
common similarity measure to evaluate and compare the performance of lesion segmentation
algorithms. Based on voxel classification, the DC is given by DC = 2·num(TP)

2·num(TP)+num(FP)+num(FN)
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Table 1. WM, GM and CSF volumes, denoted as vol (wm) , vol (gm), vol (csf), within the lesion
ROI applied to normal and brain with MS lesions (MS brain) from the Brainweb simulation
database.

vol (wm) (%) vol (gm) (%) vol (csf) (%)

MS brain 73.8 24.9 1.3
Normal 93.1 5.6 1.3

(Zijdenbos et al 1994). Here, num (TP) is the number of all TP voxels of a lesion map.
Numbers num (FP) and num (FN) are defined analogously.

Automatic lesion detection in MS patients. Since no widely accepted and publicly available
ground truth for detection of T1 hypointense lesions exists, automatic lesion detection was
evaluated against visual rating by two independent experts (AR and GW). For visual rating
rigidly coregistered FLAIR and MPRAGE images were used. First, lesions were confirmed
as ‘true’ T1 hypointense lesions by the two raters if the criteria of Sahraian et al (2010) were
met, which are T1 hypointensity and partial concordance with T2 hyperintensity. MPRAGE
images of the study cohort were supplied to the automatic lesion detection algorithm which
produced lesion maps with candidate T1 hypointense lesions. Raters then evaluated whether
correspondence between true T1 hypointense lesions and candidate T1 hypointense lesions
existed. Correspondence of true T1 lesions and candidate hypointense lesions was established
if they partly overlapped as judged by visual inspection by the two experts. Correspondence in
size and volume was not assessed. Both confirmation of lesion and definition of correspondence
were decided in consensus amongst the two experts.

A candidate T1 hypointense lesion with a correspondence to a true T1 hypointense lesion
was labeled as a TP lesion. Analogously, an FP lesion is a candidate T1 hypointense lesion
without correspondence to a true T1 hypointense lesion. Detection performance was specified
in terms of the TP fraction (TPF) and the mean number of FP lesions per patient. TPF was
defined as the total number of TP lesions divided by the total number of true T1 hypointense
lesions.

Results

Effect of misclassification

Mean GM, WM, and CSF volumes for the region defined by the lesion ROI applied to
simulation images of the non-lesion and lesion database are presented in table 1. We found
a 19.3% shift in volume from WM to GM. CSF was not affected. Taking advantage of
equation (2), the lesion effect size is given by

vol(gmβ )−vol(gm0)

vol(wm0)
. Here, vol(wm0) and vol(gm0)

are the WM and GM volume of a lesion ROI applied to an image of the non-lesion database.
vol(gmβ ) is the GM volume of a lesion ROI applied to an image of the lesion database. Values
were taken from table 1 and yielded an effect size of 0.2 for the severe T1 lesion model of the
Brainweb MR simulator (see figure 3).

Parameter optimization

A DC was calculated for each parameter set (p-value, FWHM and β) and each subject of the
normative database (28 in total) as described above. DCs were averaged over all subjects of
the normative database.
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Figure 4. DCs as a function of the lesion effect size β ranging from 0 to 1. Results are presented
for p = 0.05 and p = 0.005 and two Gaussian filter sizes with FWHM of 4 and 8 mm.

Mean DC values with errorbars given by the standard deviations are reported as a function
of the effect size in figure 4. Plots were generated for p-values 0.05 and 0.005 and Gaussian
filter sizes with FWHM of 4 and 8 mm. DC values reach a plateau or a local maximum at
effect sizes around 0.2 and then drop off for higher effect sizes.

For a p-value of 0.005 and an FWHM of 4 mm, a maximum DC of 60% was obtained
for β = 0.2. This value is the maximum for all parameter configurations and all β values. For
p = 0.005 and FWHM = 4 mm, the minimum value of 45% is reached at β = 1, meaning that
the detection performance is less for lesions which appear almost as dark as cortical GM. For
β = 0, DCs are finite due to the presence of FP voxels. Standard deviations are always smaller
than 5%. The parameter setting, p = 0.005 and FWHM = 4 mm, shows the best performance
along the entire range of β values.

For a representative β value of 0.2, a summary of the model predictions are given in
table 2.



Automatic detection of T1 hypointense MS lesions 8333

Table 2. Simulation model predictions for mean DC at a lesion effect size, β, of 0.2 tabulated
for p-values of 0.05 and 0.005 and FWHMs of 4 and 8 mm. The DC was defined as DC =
2 · num(TP)/2 · num(TP) + num(FP) + num(FN), where num(TP), num(FP) and num(FN) are
the numbers of all TP, FP and FN voxels of a lesion map.

FWHM (mm) p DC (%)

4 0.005 60
8 0.005 43
4 0.05 44
8 0.05 38

Automatic lesion detection in MS patients

The parameter setting, which demonstrated the best performance in the simulation experiment
(p = 0.005 and FWHM = 4 mm), was applied to MS patient data.

Readers identified and confirmed 96 T1 hypointense lesions in deep WM and 7 lesions
within the surrounding WM for the total of 10 MS patients of the study cohort.

The novel algorithm detected a total of 129 candidate T1 hypointense lesions in deep
WM. Ninety-three out of 129 candidate T1 hypointense lesions matched true T1 hypointense
lesions. The TPF was thus 97%. 36 candidate T1 hypointense lesions were FP lesions resulting
in 3.6 FP lesions per patient on average.

Analyzing FP lesions in more detail, we found that 6 out of 36 FP lesions could be
matched to lesions seen in MPRAGE data but not in FLAIR images. Nine FP lesions could not
be matched to either of the two MR imaging modalities. 21 FP lesions had only counterparts in
FLAIR images but not in MPRAGE. In these cases, the algorithm seems to be more sensitive
than visual inspection by experienced readers. If we relaxed the definition of T1 hypointense
lesions, accepting that a T1 hypointense lesion is either identified in MPRAGE or in FLAIR,
then the mean number of FP lesions per patient would improve to 0.9. The TPF would
reach 98%.

For illustration, figure 5 depicts automatically detected candidate T1 hypointense lesions
for a representative MS patient of the study cohort. Lesions are presented as contours
on coregistered MPRAGE and FLAIR images, for which non-parenchymal matter was
removed.

Discussion

TPMs play an important role in the segmentation process, which is an essential part of the
detection algorithm. Since TPMs were built from elderly subjects aged between 63 and 75 years
(Cyceron TPMs), they misrepresent the population of MS patients which is typically younger
on average. To evaluate the age mismatch, default TPMs of the SPM8 package (SPM TPMs)
were used for comparison. SPM TPMs were derived from 452 T1-weighted scans of normal
young adult brains and feature a 2 mm isotropic resolution. Detailed age information was not
published for this cohort. We found an improved CSF segmentation performance in normative
data for Cyceron TPMs as opposed to SPM TPMs. The inclusion of T2 information to improve
the definition of CSF as realized in the construction of Cyceron TPMs has a significant impact.
This impact seems to outweigh the age mismatch. We hypothesize that a set of TPMs matching
the age of a typical MS population and which incorporates T2 information is best suited to
minimize segmentation failures. Since no T2-weighted images were available for subjects of
the normative database, we could not build dedicated TPMs for this study.
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Figure 5. Fully automatically detected T1 hypointense lesions for a typical MS patient. Axial
views of FLAIR (left) and corresponding MPRAGE (right) images in MNI space are presented.
White contours delineate regions on MPRAGE images (right) with finite t scores for p < 0.005
and a minimum volume of 0.1 ml. The same contours (black) are overlaid on the FLAIR image.
Views are shown in radiological convention.

A lesion effect size of about 0.2 was derived from simulation data using the severe T1
lesion model of the Brainweb MR simulator. To investigate this further we calculated effect
sizes for T1 hypointense lesions in real MS patient data featuring a similar contrast as the
lesions in the Brainweb data. We found lesion effect sizes of the same order ranging from 0.18
to 0.23. As a consequence, a value of 0.2 seemed to be a good representation for this type of
MS lesions in T1-weighted images. However, the simulation has limitations since it does not
cover lesions which have a contrast similar to CSF. This would require a simulation model
which includes CSF. Such an extension is beyond the scope of this work and subject of further
studies. Moreover, segmentation using the unified segmentation engine is mainly based on
a frequency distribution of image intensities. This warrants a direct proportionality between
lesion contrast in WM and WM misclassification, i.e. the darker the contrast of lesion tissue in
WM the greater the proportion of GM. This is countered, however, by the fact that the unified
segmentation engine utilizes TPMs to correct for obvious misclassifications. The probability
of a voxel to contain a specific tissue is not only determined by the image intensity but also by
the location of the voxel in the brain as defined by the TPMs. Hence it is not straightforward
to conclude how the algorithm performs in the presence of darker WM lesions, i.e. with lesion
effect sizes greater than 0.2. Further work and more data are needed to clarify this point.
Despite these indeterminacies another group recently reported the usefulness of the unified
segmentation algorithm for the detection of increased iron content in MPRAGE images which
correlated with GM and WM misclassifications in the basalganglia (Goto et al 2012).

Although increasing β values produce a darker contrast, which suggests a greater DC,
indeed we observe that the DC slightly decreases with increasing lesion contrast. This is
because the number of TP voxels steeply rises with increasing β values and saturates for
β > 0.2. Beyond this value only the number of FP voxels gets greater due to increasing
differences between the GM content of voxels inside and outside of the lesion ROI.
Consequently, more GM content is smeared out by the Gaussian filter. This eventually leads
to a significant increase in FP voxels while the number of TP voxels remains almost constant,
thus compromising detection performance.
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For each voxel of the WM mask, distributions were generated comprising voxel values
of smoothed GM tissue maps for all subjects of the normative database. The Shapiro–Wilk
formalism was applied on voxel-basis to test for normality. The majority of voxels failed to
meet the requirements for normality if the associated maps were smoothed with a Gaussian
filter of FWHM = 4 mm. Many papers advise to use high filter sizes in order to assure that
the condition of normal distributed residuals is met for statistical testing, e.g. Muhlau et al
(2009). But Salmond et al (2002b) delivered an argument that testing for an increase in voxel
values is robust and does not require normality as a prerequisite. Implicitly the validity of their
argument is confirmed by our results.

TIV and age are used as covariates for all results presented in this paper. However, we
also tested both covariates independently of each other. We found that age does not have a
significant impact on the statistical results. Consequently, the fact that the exact age of the
simulated brains is not extractable from the literature is uncritical. GM volume suggests that
the age of the brain is between 20 and 30 years. Therefore we used a dummy age of 25 years
where needed.

No widely accepted standard for the interpretation of DC coefficients exists. Some authors
consider DC of 70% as ‘excellent’ (Anbeek et al 2004). Others interpret levels of 40%,
60% and 80% as ‘moderate’, ‘substantial’ and ‘almost perfect’ (Landis and Koch 1977). We
approximated the DC to be near 60%, which can hence be interpreted as substantial agreement.
Datta et al (2006) validated their semi-automated approach on 14 subjects. They found DCs
varying between 40% and 90%. A DC of 60% falls well in between their range of values.

Conclusion

A novel voxel-based algorithm for fully automatic detection of candidate T1 hypointense
lesions was presented. It exploits the effect that standard gray and white matter classification
schemes systematically misclassify voxels, which normally belong to white matter but appear
darker than the surrounding white matter tissue. Changes in white matter contrast are often
caused by disease processes which alter tissue properties.

A simulation model was devised to characterize the performance of the novel algorithm.
We found a maximum DC of 60% for T1 hypointense lesions, which are darker than normal
appearing white matter and brighter than cortical gray matter.

Visual inspection of MS patient images demonstrated that 97% of the automatically
detected candidate T1 hypointense lesions in deep white matter could be matched to ‘true’
T1 hypointense lesions as verified in MPRAGE and FLAIR images. 3.6 false positive T1
hypointense lesions per patient were found on average.

We conclude that the proposed algorithm shows promise to become a robust tool for fully
automatic T1 hypointense lesion detection in deep white matter regions. This warrants testing
in larger retrospective and prospective clinical studies.
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